Perturbing Hele-Shaw flow with a small gap gradient

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multiphase Hele-shaw Flow with Solidification

The one-phase Hele-Shaw flow has a long history and has been extensively studied from several point of views ranging from the fluid dynamical beginnings to complex analysis and integrable systems, see [5]. We prove existence, using the implicit function theorem, of a solution Wε in the Bochner space L2(0, T ;H1 0 (Ω;Rm)) to a non-local in time semi-linear system of coupled PDEs of second order ...

متن کامل

A kinetic formulation of Hele-Shaw flow

In this note we consider a fourth order degenerate parabolic equation modeling the evolution of the interface of a spreading droplet. The equation is approximated trough a collisional kinetic equation. This permits to derive numerical approximations that preserves positivity of the solution and the main relevant physical properties. A Monte Carlo application is also shown. Formulation cinétique...

متن کامل

Sedimenting sphere in a variable-gap Hele-Shaw cell

We have measured the trajectory and visualized the wake of a single sphere falling in a fluid confined between two closely spaced glass plates (a Hele-Shaw cell). The position of a sedimenting sphere was measured to better than 0.001d , where d is the sphere diameter, for Reynolds numbers (based on the terminal velocity) between 20 and 330, for gaps between the plates ranging from 1.014d to 1.4...

متن کامل

Models of non-Newtonian Hele-Shaw flow.

We study the Saffman-Taylor instability of a non-Newtonian fluid in a Hele-Shaw cell. Using a fluid model with shear-rate dependent viscosity, we derive a Darcy’s law whose viscosity depends upon the squared pressure gradient. This yields a natural, nonlinear boundary value problem for the pressure. A model proposed recently by Bonn et al. @Phys. Rev. Lett. 75, 2132 ~1995!# follows from this mo...

متن کامل

Hele - Shaw Flow Near Cusp Singularities

This thesis discusses the radial version of the Hele-Shaw problem. Different from the channel version, traveling-wave solutions do not exist in this version. Under algebraic potentials, in the case that the droplets expand, in finite time, cusps will appear on the boundary and classical solutions may not exist afterwards. Physicists have suggested that for (2p+ 1, 2)-cusps, that near cusp singu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review A

سال: 1992

ISSN: 1050-2947,1094-1622

DOI: 10.1103/physreva.45.2455